	Vocabulary Word	Definition	Picture
$\mathbf{1}$	Mass	The amount of matter or "stuff" in an object. It does not matter where the object is, the mass only depends on the matter in the object. Measured in Kilograms	
$\mathbf{2}$	Weight	The force of gravity pulling down on an object. It is directly related to the mass and the location of the object. Measured in Newtons or Pounds.	
$\mathbf{3}$	Force	Any push or pull on an object. Force is measured in Newtons.	
$\mathbf{5}$	Friction	Net Force	The total force on an object. Add all of the forces together to get the net force.

	Vocabulary Word	Definition	Picture
7	Free Body Diagram	A picture that has all of the forces acting on an object.	
8	Equilibrium	When the net force on an object is zero. An object can either be at rest, or moving at a constant speed.	
9	Static	An object at rest. The net force will be zero.	
10	Inertia	A resistance to change motion. The more inertia and object has, the harder to move. Inertia depends on how much mass an object has.	
11	Normal Force	The force from a surface. This force always points perpendicular to the surface.	
12	Terminal Velocity	When an object is in free fall and eventually falls at a constant speed. This happens because the force of gravity cancels out with the force of air resistance.	

	Vocabulary Word	Definition	Picture
$\mathbf{1 3}$	Vector	Any quantity that has a magnitude (number) and a direction.	
$\mathbf{1 4}$	Newton's First Law	An object at rest will stay and rest and an object in motion will stay in motion, unless an outside force acts on it.	
$\mathbf{1 5}$	Newton's Second Law	The acceleration of an object depends on how much force you apply, divided by the mass of the object.	
$\mathbf{1 6}$		Newton's Third Law	For every action there is an equal and opposite reaction.

